

Direct Air Capture as a Tool for Carbon Management

Klaus S Lackner May 3, 2017

Carbon dioxide piles up like garbage

- Carbon dioxide emissions stay in the atmosphere for centuries
- Warming from carbon dioxide lasts for a millennium
- Excess carbon acidifies the ocean for millennia

Moving to a waste management paradigm represents a big shift in dealing with CO₂
Reduce, Reuse, Recycle + DISPOSAL
Cost of disposal motivates Reuse

Need to convince people and corporations to clean up their CO₂ garbage Create a movement like recycling

Simple Carbon Math

- 1 ppm = 7.5 Gt CO_2 in the air
- CO₂ spreads to ocean and biosphere
 - On the century scale half moves out
- 1ppm = 15 Gt CO₂ emissions
- Current level of CO₂ in the air:
 405 ppm or 450 ppm_e
- 2°C warming: 450 ppm(e?)
- Rate of increase 2.5 ppm/year
 - Driven by ~35-40 Gt CO₂ per year

Required annual carbon intensity reduction (C/GDP) depends on the targeted stabilization point

The global carbon budget is heading into overdraft

Paris Agreement: hold warming below 1.5°C or at most 2°C

- Promised emissions reductions will reach 4°C, business as usual more than 6°C
- Cannot stop anymore in time

IPCC: need negative emissions

- Pulling CO₂ back from the air
- Storing CO₂ safely and permanently

Major business risk for investors Opportunity for leaders

IPCC calls for negative emissions

Need to recover CO₂ from the environment

Need storage capacity 100 ppm – 1500 Gt CO₂

More than all the emissions of the 20th century

Build a Carbon Management Industry in 30 Years?

Decarbonization

Energy efficiency Renewables Biomass

Adaptation

Managing impacts of climate change

Capture & Use

Transforming CO₂ into valuable products

Capture & Storage

Restoring C-balance through long-term sequestration

Progress, but Not Fast Enough Not Large Enough

Increasingly Necessary

Market Driven Approach

Waste Disposal Paradigm

Before 2050: For every ton of carbon dioxide released to the atmosphere another

ton of carbon dioxide will have to be extracted

After 2050: Lower CO₂ content of the atmosphere with CO₂ scrubbers

We are falling behind!

Technologies for Carbon Management

Carbon Storage

Disposal of excess carbon underground Established technology but not at scale

Fuel Synthesis

Converting renewable energy into liquid fuels Based on proven technology, needs scaling

Direct Air Capture of Carbon Dioxide

Novel technology we have introduced Needs demonstration and scaling

Technology Gap: Direct Air Capture

Need: Closure of carbon cycle via Direct Air Capture (DAC)

• Only Direct air capture can scale to close the carbon cycle through the air

Feasibility: Technology works in submarines, but is still too expensive

- Costs imposed by physics are affordable energy requirement is less than 5% of energy in carbon
- Other technologies have solved more difficult extraction problems

 Passive collectors can pull uranium out of seawater at reasonable cost (100,000 times more dilute than CO₂ in air)

Cost: Design choices and learning by doing can drive cost down

- Passive device standing in the wind like a windmill minimizes energy and capital costs
- Our moisture swing sorbents trade expensive energy for cheap water
- Mass manufacturing can drive cost down by huge factors

An air collector could capture 1000 times as much CO₂ as is avoided by an equally sized windmill.

Mass production can drastically reduce cost (photovoltaic panels, computers, cars)

Air Capture of CO₂ is an enabling technology

Markets will determine the balance between different options

Air capture eliminates all exceptions

No emission source remain exempt Separates sources from sinks

Air capture can draw down CO₂

Paying back carbon overdraft
Requires vast CO₂ storage capacity

Air capture enables non-fossil liquid fuels

Synthetic fuels from CO₂ and H₂O Energy storage & liquid fuels Requires cheap non-fossil energy

Air capture enables fossil liquid fuels

Carbon use balanced by sequestration Requires cheap CO₂ storage

Direct Air Capture balances the carbon budget through storage or fuel synthesis

Air capture devices are mechanical trees

- Thousand times faster than natural trees
- Collect current and past emissions
- Deliver CO₂ for disposal or fuel synthesis
- Can operate at global scale
- Air transports CO₂ for free
- No need for pipelines

Markets will determine the balance between different options

Feasibility & Affordability?

CO₂ in air is dilute and air is full of water

- Sherwood's Rule suggests that costs scale linearly in dilution
- The air carries 10 to 100 times as much H₂O as CO₂
- First-of-a-kind apparatus is expensive (APS study: \$600/t)

Avoiding Sherwood's Rule

Cost of separation scales linearly with dilution D

Sherwood's Rule

The cost of the first step in the separation dominates

$$Cost = aD + b + c \log D$$
Bulk Thermodynamic separation

Wind energy – Air capture

Monoliths as low-pressure drop air filters

ASU small test unit

Air collector reduces net CO₂ emissions much more than equally sized windmill

Extracting kinetic energy from a source of 20 J/m³ is feasible

Wind energy ~20 J/m³

CO₂ combustion equivalent in air 10,000 J/m³

Passive contacting of air is inexpensive

Image courtesy Stonehaven production

artist's rendering

Required Sorbent Strength

depends logarithmically on CO₂ concentration at collector exit

Sorbent regeneration dominates cost

Regenerator: Flue Gas Scrubbing – Air Capture

Sorbent regeneration slightly more difficult for air capture than for flue gas scrubbers

Air Capture is Real

- Several start-ups have working prototypes
- Different approaches, different markets
- Gaining experience, demonstrating costs
- Establishing a new technology

Research is proceeding at a number of universities
ASU, Georgia Tech, Columbia University,
ETH Zurich, Sheffield University, Zhejiang University, ...

ASU's air capture design

- Passive wind-driven design avoids Sherwood's objection
- Moisture controlled sorbent reduces energy consumption
- Mass production of small units drives costs down

Lessons are applied in a DOE project to feed CO₂ to algae

Aggregate modules into sail-like structures

a) open

Airflow Wind

Moisture Swing Sorbent for Low Energy Air Capture

Type I Strong Base Resins

CH₃ - N⁺ - CH₃

Anionic Exchange Resin: Solid carbonate "solution" Quaternary ammonium ions form strong-base resin

- Positive ions fixed to polymer matrix
 - Negative ions are free to move
 - Negative ions are hydroxides, OH⁻
- Dry resin loads up to bicarbonate

Wet resin releases CO₂ and unloads to carbonate

$$-2HCO_3^- \rightarrow CO_3^- + CO_2 + H_2O$$

Novel moisture driven CO₂ swing

The Moisture Swing

How to move to scale?

Mass-produced factory-built one-ton-per-day units

100 million units would eliminate current world emissions

Rely on learning

Mass production approach

Find markets

Small commercial niches

Create value proposition

Value is ultimately derived from cleanup

Waste management paradigm

Technology can reach global scales with proper market incentives

Production Capacity

10 year life time implies a production capacity of 10 million per year

Shanghai harbor processes
30 million full containers a year

World car and light truck production: 80 million per year

Low cost comes with experience

The Power of the Learning Curve

Ingredient costs are already small — small units: low startup cost

Voluntary repayment of carbon debt for individuals and sustainably minded-corporations

This is how recycling became a business, how renewable energy is paid for Volunteers create a carbon price, regulatory policies will follow

Societal license to operate for carbon producers

Without air capture, liquid fuels will have to be phased out

Protecting assets in the ground

Natural gas is not running out and a valuable resource

New business opportunity around waste management

Waste management for garbage and sewage has been built into lucrative enterprises

Reducing future liabilities

Imagine a button at the pump to take back the 20 pounds of CO₂ emitted from a gallon of gasoline

How to move forward?

- •First-of-a-kind pilot to deliver concentrated CO₂ (98%)
- Cost target below \$100/ton
- One-ton-per-day demo-unit derisks technology

Buy Back the Carbon Campaign

- Government funding is in doubt
 Top down approaches have not worked
- Immediate economic incentives for carbon reuse are small Fossil carbon is always cheaper
- Philanthropic outlook and volunteers can deliver results
 Outreach, Education, Demonstration, Implementation

Leadership can kick-start the field of carbon management

- Establish in the minds of individuals and institutions the need to clean up excess carbon
- Create negative emissions
- Test and demonstrate small, nimble, affordable and scalable technologies, market mechanisms and policies
- Offer universities as testbeds